
MULTILINEAR SQUARE FUNCTIONS AND MULTIPLE
WEIGHTS

LOUKAS GRAFAKOS, PARASAR MOHANTY and SAURABH SHRIVASTAVA

Abstract

In this paper we prove weighted estimates for a class of smooth multilinear square functions
with respect to multilinear A~P

weights. In particular, we establish weighted estimates for the

smooth multilinear square functions associated with disjoint cubes of equivalent side-lengths.

As a consequence, for this particular class of multilinear square functions, we provide an
affirmative answer to a question raised by Benea and Bernicot [2] about unweighted estimates

for smooth bilinear square functions.

1. Introduction

Let φ(ξ1, ξ2, . . . , ξm) be a bounded measurable function defined on the m−fold
Cartesian product Rn with m ≥ 2, n ≥ 1. For m−tuples of nice functions
~f = (f1, f2, . . . , fm), the multilinear multiplier operator Tφ associated with the
symbol φ is defined by

Tφ(~f )(x) =

∫
Rmn

φ(ξ1, ξ2, . . . , ξm) exp
(
2πi(

m∑
j=1

x · ξj)
) m∏
j=1

f̂j(ξj)dξj , (1)

where x · y denotes the standard inner product of vectors x and y in Rn.

The above expression for Tφ(~f)(x) in space variables for functions fj takes
the form

Tφ(~f )(x) =

∫
Rmn

K(y1, y2, . . . , ym)

m∏
j=1

fj(x− yj)dyj , (2)
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where K = φ̌, provided the integral is interpreted appropriately as an action of
a distribution to a tensor product of functions, if necessary.

The modern theory of multilinear operators is motivated by the remarkable
works of Lacey and Thiele [9, 10] on Lp−boundedness of the bilinear Hilbert
transform. The bilinear Hilbert transform is a bilinear singular integral operator
possessing a crucial property of modulation invariance. There has been a con-
siderable progress in understanding the core issues and difficulties in the area of
multilinear singular integral operators in the past decade.

In this paper we are concerned with operators that are closely related to
multilinear Calderón-Zygmund operators. The multilinear Calderón-Zygmund
theory has been studied and developed systematically by Grafakos and Torres [7].
The weighted theory of these operators has been developed by Lerner et al [13]; in
this paper the authors study a maximal function which plays the analogous role
in the multilinear Calderón-Zygmund theory as the classical Hardy-Littlewood
maximal function plays in the context of the linear Calderón-Zygmund operators.
They also introduce multilinear A~P weights which completely characterize the
weighted Lp−boundedness of this multilinear maximal operator.

Given an m−tuple of locally intergrable functions ~f = (f1, f2, . . . , fm), the

multilinear maximal operator M(~f ) is defined by

M(~f )(x) = sup
Q3x

m∏
j=1

1

|Q|

∫
Q

|fj(yj)|dyj , x ∈ Rn.

For an m−tuple of exponents p1, p2, . . ., pm we will denote by p the exponent

given by 1
p = 1

p1
+ · · ·+ 1

pm
and ~P = (p1, . . ., pm).

Definition 1.1. Let 1 6 p1, . . ., pm < ∞. Given an m−tuple of weights
~w = (w1, w2, . . ., wm), set

v~w =

m∏
j=1

w
p/pj
j .

We say that ~w satisfies the multilinear A~P condition if, and only if(
1

|Q|

∫
Q

v~wdy

)1/p m∏
j=1

(
1

|Q|

∫
Q

w
1−p

′
j

j dyj

)1/p′j

6 K (3)

for all cubes Q.

Here we follow the standard interpretation of the average
(

1
|Q|
∫
Q
w1−p′jdyj

) 1
p′
j

as (ess infQ wj)
−1

when pj = 1.
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Observe that the Muckenhoupt’s classical Ap weights always give rise to mul-
tilinear A~P weights in the sense that

m∏
j=1

Apj ⊂ A~P .

Moreover the preceding inclusion relation is strict. See [13] for more details and
important properties of multilinear A~P weights.

The following characterization of the multilinear A~P weights in terms of the
classical Ap weights has been proved in [13]. This will be used in the proof of
our main result.

Theorem 1.2. [13] Let ~w = (w1, w2, . . . , wm) and 1 6 p1, . . . , pm <∞. Then
~w ∈ A~P if, and only if

w
1−p′j
j ∈ Amp′j , j = 1, 2, . . . ,m and

v~w ∈ Amp,

where the condition w
1−p′j
j ∈ Amp′j is understood as w

1/m
j ∈ A1 when pj = 1.

The multilinear A~P weights completely characterize weighted Lp− bounded-

ness of multilinear maximal function M(~f ) in the following sense.

Theorem 1.3. [13] Let 1 < pj < ∞, j = 1, 2, . . . ,m, be such that 1
p = 1

p1
+

· · ·+ 1
pm

. Then the strong-type weighted inequality

‖M(~f )‖Lp(v~w) .
m∏
j=1

‖fj‖Lpj (wj) (4)

holds for every ~f = (f1, f2, . . . , fm) if, and only if ~w = (w1, w2, . . . , wm) satisfies
the multilinear A~P condition.

We refer to [4, 11, 12] for recent developments on weighted estimates for
multilinear operators using sparse domination principle.

Throughout this paper, the notation A . B is used to indicate that there is
a constant C > 0 such that A ≤ CB.

2. Multilinear square functions

Let {Q}Q∈Ω be a collection of disjoint cubes in Rmn. Let ΦQ be smooth functions

adapted1 to cubes Q ∈ Ω. Let TΦQ(~f ) denote the multilinear multiplier operator

1 this means that ΦQ(x) = Φ(
x−cQ
`(Q)

), where cQ is the center of Q, `(Q) is its length, and

Φ is supported in the double of Q and equals 1 on Q.
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associated with the function ΦQ. The multilinear smooth square function TΩ(~f )
associated with the collection Ω is defined by

TΩ(~f )(x) :=

∑
Q∈Ω

|TΦQ(~f )(x)|2
 1

2

. (5)

We would like to remark that obtaining Lp−estimates for multilinear square func-
tions is much harder than its classical counterpart. In his celebrated paper [17],
Rubio de Francia proved Lp−estimates for the classical Littlewood-Paley opera-
tor associated with an arbitrary sequence of disjoint intervals in R. An analogue
of this result in the multilinear setting is an open problem to this day. In the
theory of classical Fourier multipliers, by the virtue of the Plancherel theorem,
the L2−estimates for the Littlewood-Paley operators always hold. However, in
the multilinear case there is no preferred Lp−space for which we a priori have
boundedness of the multilinear operators under consideration. Furthermore, the
multiplier symbols for the multilinear operators under consideration have their
supports in higher dimensional spaces and the geometry of disjoint cubes pose
additional difficulties in higher dimensions in dealing with such operators.

The main motivation of this paper comes from a recent work of Benea and
Bernicot [2] on the bilinear square functions. In their paper the authors addressed
the bilinear case (i.e. m = 2) and considered the `r−valued operator

TΩ,r(~f )(x) :=

∑
Q∈Ω

|TΦQ(~f )(x)|r
 1

r

, r > 2 (6)

and proved the following.

Theorem 2.1. [2] Let {Q}Q∈Ω be a collection of disjoint cubes in R2 and
ΦQ be smooth bump functions adapted to cube Q ∈ Ω. If r′ < p1, p2 ≤ ∞ and
r′

2 < p < r are such that 1
p1

+ 1
p2

= 1
p , then we have

‖TΩ,r(~f )‖p . ‖f1‖p1
‖f2‖p2

. (7)

The proof of this theorem in very involved and relies on sophisticated tech-
niques from time-frequency analysis. The authors developed suitable time-
frequency techniques to deal with the geometry of cubes. The use of lr−norm is
due to the method of their proof and does not seem to address the question of
bilinear square function (i.e., r = 2).

We emphasize that Theorem 2.1 establishes un-weighted Lp−estimates for
`r−valued, r > 2, bilinear operators on R× R. The question for bilinear square
functions, i.e., r = 2, remains open. In this paper we provide an affirmative
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answer to this question for smooth square function associated with collection of
disjoint cubes whose side lengths are equivalent. We not only address the ques-
tion in the general setting of multilinear smooth square functions defined in Rn,
but also prove weighted estimates at the same time for the best possible range of
exponents and multilinear A~P weights. This gives us a complete analogue of the
corresponding classical result about Littlewood-Paley operators in the context
of multilinear multiplier operators. The proof of our main result (Theorem 3.1)
is motivated from the ideas presented in [15] (see also [6]) for the bilinear square
functions and [16] for the classical Littlewood-Paley operators.

3. Main Result

We prove the following result.

Theorem 3.1. Let {Q}Q∈Ω be a collection of disjoint cubes in Rmn and ΦQ
be smooth bump functions adapted to the cube Q such that

sup
Q

∫
Q

|(1−∆)NΦQ(ξ)|2dξ = C <∞, (8)

where N > mn
(

1
4 + 1

2 max( 1
p , 1)

)
. Let p1, p2, . . . , pm ≥ 2 satisfy 1

p1
+ 1

p2
+ · · ·+

1
pm

= 1
p . Then the weighted inequality

‖TΩ(~f )‖Lp(v~w) .
m∏
j=1

‖fj‖Lpj (wj) (9)

holds for all ~f and every ~w = (w1, w2, . . . , wm) ∈ A ~P
2

, where
~P
2 = (p1

2 ,
p2

2 , . . . ,
pm
2 ).

Remark 3.2. Recall that in the classical setting the Littlewood-Paley oper-
ator associated with an arbitrary sequence of disjoint intervals is bounded from
Lp(w) into itself for 2 < p <∞ if w ∈ A p

2
. See [17] for details. Therefore, Theo-

rem 3.1 provides a complete multilinear analogue of the corresponding classical
result.

Proof. We shall use the notation α = (α1, α2, . . . , αm) ∈ Zmn, where each of
αj , j = 1, 2, . . . ,m, lies in Zn. We also set |α| =

∑m
j=1 |αj |, where |αj | is the the

sum of the entries of αj .

We prove that the multilinear square function TΩ(~f ) is dominated, in the
pointwise a.e. sense, by a suitable form involving multilinear averages. More
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precisely, we show that there exist cubes Rα centered at 0 such that

|TΩ(~f )(x)| .
∑

α∈Zmn

|α|mn/2

(1 + |α|)2N

 m∏
j=1

1

|Rα|

∫
x+Rα

|fj(yj)|2 dyj

 1
2

for a.e. x

(10)
where N is as in the hypothesis of the theorem.

Let {aQ} be a square summable sequence of scalars with
∑
Q |aQ|2 = 1. For

each α ∈ Zmn, let Qα denote the cube in Rmn obtained by translating the unit
cube in Rmn by α. Note that the cube Qα may be written as the product of
cubes in Rn

Qα =

m∏
j=1

Qαj .

Setting Ψ(y1, y2, . . . , ym) =
∑
Q∈Ω

aQΦ̌Q(y1, y2, . . . , ym) we write

∣∣∣∣∣∣
∑
Q∈Ω

aQTΦQ(~f )(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
Q∈Ω

aQ

∫
Rmn

Φ̌Q(y1, y2, . . . , ym)

m∏
j=1

fj(x− yj)dyj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Rmn

∑
Q∈Ω

aQΦ̌Q(y1, y2, . . . , ym)

m∏
j=1

fj(x− yj)dyj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Rmn

Ψ(y1, y2, . . . , ym)

m∏
j=1

fj(x− yj)dyj

∣∣∣∣∣∣
≤

∑
α∈Zmn

∫
Qα

|Ψ(y1, y2, . . . , ym)|
m∏
j=1

|fj(x− yj)|dyj

≤
∑

α∈Zmn

∫
Qα

m∏
j=1

|fj(x− yj)|2 d~y

 1
2

(11)

(∫
Qα

|Ψ(y1, y2, . . . , ym)|2d~y
) 1

2

.
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Plancherel’s identity yields

‖(1 + | · |2)NΨ(.)‖L2(Qα) ≤
∥∥(1−∆)N Ψ̂(·)

∥∥
2

=

∥∥∥∥(1−∆)N
∑
Q

aQΦQ

∥∥∥∥
2

=

∥∥∥∥∑
Q

aQ(1−∆)NΦQ

∥∥∥∥
2

.

Since supp (ΦQ) ⊆ Q and the collection {Q}Q∈Ω consists of disjoint cubes, we
obtain that

‖(1 + | · |2)NΨ(·)‖2L2(Qα) ≤
∑
Q

|aQ|2
∫
Q

|(1−∆)NΦQ|2 ≤ C.

Therefore, we obtain

‖Ψ‖L2(Qα) .
1

(1 + |α|)2N
.

Substituting the above in (11) and using a duality argument for `2, we obtain

|TΩ(~f )(x)| .
∑

α∈Zmn

1

(1 + |α|)2N

∫
Qα

m∏
j=1

|fj(x− yj)|2d~y

 1
2

,

where N is a large positive integer. Now for each α ∈ Zmn we set

Rα =
[
− max

1≤i≤m,1≤j≤n
|αij |, max

1≤i≤m,1≤j≤n
|αij |

]n
.

Then Rα is a cube in Rn centered at 0 with |Rα| ≤ (2|α|)n which satisfies

x−Qα ⊂ (x+Rα)m

for all x ∈ Rn. Then we have(∫
Qα

m∏
j=1

|fj(x−yj)|2d~y
) 1

2

≤ |Rα|
m
2

(
m∏
j=1

(
1

|Rα|

∫
x+Rα

|fj(yj)|2dyj
)) 1

2

. (12)

This yields (10).

In view of the convergence of the sum in (14), it suffices to obtain weighted
estimates for each term of the sum in (10) separately. For every j, set rj =

pj
2
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and note that rj ≥ 1. Hölder’s inequality with exponents rj and r′j yields

1

|Rα|

∫
x+Rα

|fj(yj)|2dyj ≤
(

1

|Rα|

∫
x+Rα

|fj(yj)|pjwjdyj
) 1
rj

(
1

|Rα|

∫
x+Rα

w
1−r′j
j dyj

) 1
r′
j
.

When rj = 1, the average
(

1
|Rα|

∫
x+Rα

w
1−r′j
j dyj

) 1
r′
j is interpreted as (ess infRα wj)

−1
.

Therefore we obtain,

m∏
j=1

(
1

|Rα|

∫
x+Rα

|fj(yj)|2dyj
)

≤
m∏
j=1

(
1

|Rα|

∫
x+Rα

|fj(yj)|pjwjdyj
) 1
rj
(

1

|Rα|

∫
x+Rα

w
1−r′j
j dyj

) 1
r′
j

≤
m∏
j=1

(
1

v~w(x+Rα)

∫
x+Rα

|fj(yj)|pjwjdyj
) 1
rj

(
v~w(x+Rα)

|Rα|

) 2
p
m∏
j=1

(
1

|Rα|

∫
x+Rα

w
1−r′j
j dyj

) 1
r′
j

≤ [~w]A~P/2

m∏
j=1

(
ARα,v~w

(
|fj |pj

wj
v~w

)
(x)

) 1
rj

,

where AQ,w(f) is the weighted average

AQ,w(f)(x) :=
1

w(x+Q)

∫
x+Q

|f |w dy.

It follows that m∏
j=1

1

|Rα|

∫
x+Rα

|fj(yj)|2dyj

 1
2

≤ [~w]
1
2

A~P/2

[
ARα,v~w

(
|fj |pj

wj
v~w

)
(x)

] 1
pj

. (13)

In view of (13) and (10), we obtain that the multilinear square function TΩ(~f )
is dominated by a sum of terms involving weighted averages ARα,v~w(|fj |pj wjv~w ).

First observe that it suffices to prove the desired estimate on the Lp(v~w)−norm of

a single term
∏m
j=1

[
ARα,v~w(|fj |pj wjv~w )

] 1
pj , with a uniform constant with respect
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to the length of Rα. Note that as pj ≥ 2 we have 2
m ≤ p. If p ≥ 1, the assertion

follows by Minkowski’s inequality and the convergence of the series∑
α∈Zmn

|α|mn/2

(1 + |α|)2N
(14)

forN > 3
4mn. This condition coincides with the condition in the statement of the

theorem when p ≥ 1. Now if p satisfies 2
m ≤ p < 1, then we use the inequality

that (
∑
α |Cα|)p ≤

∑
α |Cα|p instead of Minkowski’s inequality to deduce the

desired estimate provided the series∑
α∈Zmn

|α|pmn/2

(1 + |α|)2Np

converges; but this is the case since N >
(

1
4 + 1

2p

)
mn when p < 1.

Hölder’s inequality yields∥∥∥∥∥∥
m∏
j=1

[
ARα,v~w

(
|fj |pj

wj
v~w

)] 1
pj

∥∥∥∥∥∥
Lp(v~w)

≤
m∏
j=1

∥∥∥∥ARα,v~w(|fj |pj wjv~w
)∥∥∥∥ 1

pj

L1(v~w)

.

Furthermore, in order to prove the desired estimate (9), it is enough to show
that for doubling weights w, we have

‖AQ,w(f)‖L1(w) . ‖f‖L1(w) (15)

with bounds independent of l(Q).

Let Q be a cube whose center is at the origin and denote Q(x) = x+Q. Then

AQ,w(f)(x) =
1

w(Q(x))

∫
Q(x)

|f |wdy

=
1

w(Q(x))

∫
Q

|f(x− y)|w(x− y)dy.

Integrating the above with respect to w(x)dx,∫
Rn
AQ,w(f)(x)w(x)dx =

∫
Q

∫
Rn

1

w(Q(x))
|f(x− y)|w(x− y)w(x)dxdy

=

∫
Q

∫
Rn

1

w(Q(x+ y))
|f(x)|w(x)w(x+ y)dxdy

=

∫
Rn
|f(x)|w(x)

∫
Q

1

w(Q(x+ y))
w(x+ y)dydx.
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Since w is doubling we get that w(Q(x+y)) ≈ w(Q(x) for all y ∈ Q with constant
independent of y. Therefore, the term∫

Q

1

w(Q(x+ y))
w(x+ y)dy . 1.

This completes the proof.

Remark 3.3. We would like to indicate that the pointwise a.e. estimate (10)
with the multi-linear maximal function

M2(~f )2(x) := sup
Q3x

m∏
j=1

1

|Q|

∫
Q

|fj(yj)|2dµ(yj), x ∈ Rn

on the right hand side in the inequality (10) can be obtained rather easily.

In a straightforward manner Theorem 1.3 implies that the operator M2 sat-
isfies the strong-type weighted estimates

‖M2(~f )‖Lp(v~w) .
m∏
j=1

‖fj‖Lpj (wj)

for 2 < pj < ∞, j = 1, 2, . . . ,m, with 1
p = 1

p1
+ ... + 1

pm
and every multilinear

weight ~w = (w1, w2, . . . , wm) in the class A ~P/2
. As a consequence we can obtain

the weighted estimates for multilinear square functions for all 2 < pj < ∞, j =
1, 2, . . . ,m,

However, this approach does not yield strong-type weighted estimates at end-
points, i.e. when pj = 2 for some j′s. We have used the weighted averaging
operators to circumvent this issue and obtained strong type weighted estimates
for the entire possible range of exponents in Theorem 3.1.

4. Application to bilinear square function associated with strips

The bilinear multiplier operators associated with symbols of the form φ(ξ −
η) are of specific interest and fall under the category of modulation invariant
operators. The well-known bilinear Hilbert transform is an important example
of such operators. See [4, 9, 10] for more details.

The bilinear Littlewood-Paley operators associated with such bilinear mul-
tipliers may be defined in a similar fashion. We refer the interested reader
to [1, 3, 5, 6, 8, 14, 15] and the references therein for some relevant background
on this.

Here we focus on the following situation. Let {Ij}j∈N be a sequence of intervals
with |Ij | ≈ 1 for all j and let φj be a smooth function adapted to interval Ij .
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The bilinear smooth square function associated with the sequence {φj}j is
defined by

S(f, g)(x) :=

∑
j∈N
|Sφj (f, g)(x)|2

 1
2

,

where Sφj is the bilinear multiplier operator associated with symbol φj(ξ − η).

Consider a smooth function ψ supported in [−1, 1] such that
∑
k ψ(ξ−k) = 1.

For each j we have

φj(ξ − η) =
∑
k

φj(ξ − η)ψk(ξ + η − k).

Denote Φj,k(ξ, η) = φj(ξ−η)ψ(ξ+η−k) and note that Φj,k are smooth bilinear
multipliers whose supports have bounded overlaps.

For compactly supported functions f, g, and h consider

〈Sj(f, g), h〉 =

∫
R

∫
R
f̂(ξ)ĝ(η)φj(ξ − η)ĥ(ξ + η)dξdη

=
∑
k

∫
R

∫
R
f̂(ξ)ĝ(η)Φj,k(ξ, η)χ

Aj,k
(ξ + η)ĥ(ξ + η)dξdη

=
∑
k

∫
R

∫
R
f̂(ξ)ĝ(η)Φj,k(ξ, η)θj,k(ξ + η)ĥ(ξ + η)dξdη,

where Aj,k = {ξ+η : (ξ, η) ∈ supp(Φj,k)} and θj,k is a smooth function supported
in 2Aj,k with θj,k = 1 on Aj,k. Therefore, we have

|〈Sj(f, g), h〉| ≤
∫
R

(∑
k

|T
Φj,k

(f, g)(x)|2
) 1

2
(∑

k

|T̃j,k(h)(x)|2
) 1

2

dx,

where T̃j,k(h) = (θj,kĥ)̌ is the Fourier multiplier operator with smooth symbol
θj,k.

Note that for each fixed j, the intervals Aj,k have bounded overlaps and
since they are of equivalent size, the supports of θj,k also have bounded overlaps
uniformly with respect to j. Consequently, for each j the Littlewood-Paley
operator associated with the multiplier sequence θj,k is bounded on Lp for p ≥ 2
with a uniform bound with respect to j.

Therefore, we obtain

‖Sj(f, g)‖2 .

∥∥∥∥(∑
k

|T
Φj,k

(f, g)(x)|2
) 1

2

∥∥∥∥
2
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Using the boundedness of the bilinear smooth square function

(f, g)→

∑
j,k

|T
Φj,k

(f, g)(x)|2
 1

2

we obtain ∥∥∥∥(∑
j

|Sj(f, g)(x)|2
) 1

2

∥∥∥∥
2

. ‖f‖p‖g‖q

for all p, q > 0 such that 1
p + 1

q = 1
2 .

An analogous problem with rough cutoffs was addressed by Bernicot [1].
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